Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Expert Opin Pharmacother ; 24(5): 551-555, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2271504

ABSTRACT

INTRODUCTION: Montelukast is a leukotriene inhibitor that is widely used to treat chronic asthma and allergic rhinitis. The drug interferes with molecular signaling pathways produced by leukotrienes in a variety of cells and tissues throughout the human body that lead to tightening of airway muscles, production of aberrant pulmonary fluid (airway edema), and in some cases, pulmonary inflammation. AREAS COVERED: Montelukast has also been noted to have anti-inflammatory properties, suggesting it may have a role in the treatment of coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has been noted to induce misfiring of the immune system in some patients. A literature search of PubMed was performed to identify all relevant studies of montelukast and SARS-CoV-2 through 27 January 2023. EXPERT OPINION: Montelukast has been the subject of small studies of SARS-CoV-2 and will be included in a large, randomized, double-blind, placebo-controlled study of outpatients with COVID-19 sponsored by the United States National Institutes of Health known as Accelerating COVID-19 Therapeutic Interventions and Vaccines-6. This paper reviews what is known about montelukast, an inexpensive, well-tolerated, and widely available medication, and examines the rationale for using this drug to potentially treat patients with COVID-19.


Subject(s)
Asthma , COVID-19 , Quinolines , Humans , Leukotriene Antagonists/therapeutic use , SARS-CoV-2 , Asthma/drug therapy , Acetates/therapeutic use , Quinolines/therapeutic use , Quinolines/pharmacology , Cyclopropanes/therapeutic use , Sulfides/therapeutic use , Double-Blind Method , Randomized Controlled Trials as Topic
2.
ChemMedChem ; 17(9): e202200005, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1705786

ABSTRACT

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 µm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 µM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.


Subject(s)
Artemisinins , COVID-19 Drug Treatment , Leukemia , Neoplasms , Quinolines , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artemisinins/pharmacology , Chlorocebus aethiops , Humans , Leukemia/drug therapy , Neoplasms/drug therapy , Peroxides , Quinolines/therapeutic use , SARS-CoV-2 , Vero Cells
3.
Int Immunopharmacol ; 103: 108412, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568781

ABSTRACT

Levocetirizine, a third-generation antihistamine, and montelukast, a leukotriene receptor antagonist, exhibit remarkable synergistic anti-inflammatory activity across a spectrum of signaling proteins, cell adhesion molecules, and leukocytes. By targeting cellular protein activity, they are uniquely positioned to treat the symptoms of COVID-19. Clinical data to date with an associated six-month follow-up, suggests the combination therapy may prevent the progression of the disease from mild to moderate to severe, as well as prevent/treat many of the aspects of 'Long COVID,' thereby cost effectively reducing both morbidity and mortality. To investigate patient outcomes, 53 consecutive COVID-19 test (+) cases (ages 3-90) from a well-established, single-center practice in Boston, Massachusetts, between March - November 2020, were treated with levocetirizine and montelukast in addition to then existing protocols [2]. The data set was retrospectively reviewed. Thirty-four cases were considered mild (64%), 17 moderate (32%), and 2 (4%) severe. Several patients presented with significant comorbidities (obesity: n = 22, 41%; diabetes: n = 10, 19%; hypertension: n = 24, 45%). Among the cohort there were no exclusions, no intubations, and no deaths. The pilot study in Massachusetts encompassed the first COVID-19 wave which peaked on April 23, 2020 as well as the ascending portion of the second wave in the fall. During this period the average weekly COVID-19 case mortality rate (confirmed deaths/confirmed cases) varied considerably between 1 and 7.5% [37]. FDA has approved a multicenter, randomized, placebo-controlled, Phase 2 clinical trial design, replete with electronic diaries and laboratory metrics to explore scientific questions not addressed herein.


Subject(s)
Acetates/therapeutic use , COVID-19 Drug Treatment , Cetirizine/therapeutic use , Cyclopropanes/therapeutic use , Histamine H1 Antagonists, Non-Sedating/therapeutic use , Leukotriene Antagonists/therapeutic use , Quinolines/therapeutic use , SARS-CoV-2/drug effects , Sulfides/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
4.
Anticancer Drugs ; 32(10): 1116-1117, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1475864

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, clinicians are required to manage patient care for pre-existing conditions. Currently, there are no clear indications regarding the management of lenvatinib-treated patients for radioiodine-refractory thyroid cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A 74-year-old male patient was treated with lenvatinib since March 2019, with disease recurrence in the thyroid bed and bilateral multiple lung metastases. The patient partially responded to treatment, with reduction in lung metastases. In September 2019, the patient tested positive for SARS-CoV-2 and isolated at home. Initially asymptomatic, the patient developed mild symptoms. Lenvatinib treatment continued with daily monitoring of vital signs. After telemedicine consultation of patient's clinical condition, severity of symptoms was low. He tested negative for SARS-CoV-2 21 days after testing positive. The patient received the full course of lenvatinib treatment. This is the first reported case of a lenvatinib-treated patient who developed COVID-19 and could continue treatment. Despite concerns over COVID-19, clinicians should not overlook treatment of pre-existing diseases or discontinue treatment, particularly for cancer. Clinicians should evaluate a patient's history and clinical presentation, monitoring the patient to reduce the development of complications in high-risk settings, avoiding treatment discontinuation.


Subject(s)
COVID-19/complications , Lung Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Thyroid Neoplasms/drug therapy , Aged , Humans , Lung Neoplasms/secondary , Male , Thyroid Neoplasms/pathology
5.
Eur J Med Chem ; 215: 113220, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1385485

ABSTRACT

In current scenario, various heterocycles have come up exhibiting crucial role in various medicinal agents which are valuable for mankind. Out of diverse range of heterocycle, quinoline scaffold have been proved to play an important role in broad range of biological activities. Several drug molecules bearing a quinoline molecule with useful anticancer, antibacterial activities etc have been marketed such as chloroquine, saquinavir etc. Owing to their broad spectrum biological role, various synthetic strategies such as Skraup reaction, Combes reaction etc. has been developed by the researchers all over the world. But still the synthetic methods are associated with various limitations as formation of side products, use of expensive metal catalysts. Thus, several efforts to develop an efficient and cost effective synthetic protocol are still carried out till date. Moreover, quinoline scaffold displays remarkable antiviral activity. Therefore, in this review we have made an attempt to describe recent synthetic protocols developed by various research groups along with giving a complete explanation about the role of quinoline derivatives as antiviral agent. Quinoline derivatives were found potent against various strains of viruses like zika virus, enterovirus, herpes virus, human immunodeficiency virus, ebola virus, hepatitis C virus, SARS virus and MERS virus etc.


Subject(s)
Antiviral Agents/therapeutic use , Quinolines/therapeutic use , Virus Diseases/drug therapy , Viruses/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Cell Line, Tumor , Humans , Quinolines/chemical synthesis , Quinolines/pharmacology
6.
Zhongguo Fei Ai Za Zhi ; 24(7): 519-525, 2021 Jul 20.
Article in Chinese | MEDLINE | ID: covidwho-1348716

ABSTRACT

BACKGROUND: Immune checkpoint inhibitor associated pneumonia (CIP) is a serious side effect of immune checkpoint inhibitors. There is a consensus on the treatment of acute phase of CIP, but the treatment of pulmonary interstitial fibrosis after the acute phase is still a clinical problem to be solved. METHODS: The diagnosis and treatment of a non-small cell lung cancer (NSCLC) patient with immune checkpoint inhibitor associated pneumonia in the Stereotactic Radiotherapy Department of Qingdao Central Hospital were retrospectively analyzed, and literatures were reviewed. RESULTS: A 70-year-old male patient was diagnosed with Poorly differentiated squamous cell carcinoma of left lung with mediastinal lymph node metastasis T3N3M0 stage IIIc, EGFR/ALK/ROS1/RAF negative, PD-L1 (22c3) immunohistochemistry negative. After the progression of first-line chemotherapy, the patient was diagnosed as immune checkpoint inhibitor associated pneumonia grade 3 during second-line monotherapy with Nivolumab. After initial high-dose glucocorticoid pulse therapy, the lung computed tomography (CT) imaging and clinical symptoms of the patients were partially relieved, and then pirfenidone (300 mg tid) was given orally for more than 11 months. During the treatment of pirfenidone, the CT imaging and clinical symptoms of the patients were significantly improved, and there were no other adverse reactions except grade 1 nausea. During this period, chemotherapy and Anlotinib was given concurrently with pirfenidone and showed good safety profile. CONCLUSIONS: This case report is the first report of pirfenidone in the treatment of CIP, which provides a new idea for the clinical practice and research of CIP treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Carcinoma, Squamous Cell , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms , Pneumonia , Pyridones , Aged , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Glucocorticoids/therapeutic use , Humans , Immune Checkpoint Inhibitors/therapeutic use , Indoles/therapeutic use , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Nivolumab/adverse effects , Nivolumab/therapeutic use , Pneumonia/chemically induced , Pneumonia/diagnostic imaging , Pneumonia/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyridones/therapeutic use , Quinolines/therapeutic use , Retrospective Studies
7.
Pharmacology ; 106(9-10): 469-476, 2021.
Article in English | MEDLINE | ID: covidwho-1344012

ABSTRACT

BACKGROUND: The coronavirus disease-19 (COVID-19) pandemic is a serious devastating disease and has posed a global health emergency. So far, there is not any specific therapy approved till date to control the clinical symptoms of the disease. Remdesivir has been approved by the FDA as an emergency clinical therapy. But it may not be effective alone to control the disease as it can only control the viral replication in the host. SUMMARY: This article summarizes the possible therapeutic potential and benefits of using montelukast, a cysteinyl leukotriene 1 (CysLT1) receptor antagonist, to control COVID-19 pathophysiology. Montelukast has shown anti-inflammatory effects, reduced cytokine production, improvement in post-infection cough production and other lung complications. Key Messages: Recent reports clearly indicate a distinct role of CysLT-regulated cytokines and immunological signaling in COVID-19. Thus, montelukast may have a clinical potential to control lung pathology during COVID-19.


Subject(s)
Acetates/pharmacology , COVID-19 Drug Treatment , Cyclopropanes/pharmacology , Leukotriene Antagonists/pharmacology , Quinolines/pharmacology , Sulfides/pharmacology , Acetates/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/physiopathology , Cyclopropanes/therapeutic use , Humans , Leukotriene Antagonists/therapeutic use , Quinolines/therapeutic use , Receptors, Leukotriene/metabolism , Sulfides/therapeutic use
8.
Eur J Pharmacol ; 904: 174196, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1230461

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the responsible agent for the coronavirus disease 2019 (Covid-19), has its entry point through interaction with angiotensin converting enzyme 2 (ACE2) receptors, highly expressed in lung type II alveolar cells and other tissues, like heart, pancreas, brain, and vascular endothelium. This review aimed to elucidate the potential role of leukotrienes (LTs) in the pathogenesis and clinical presentation of SARS-CoV-2 infection, and to reveal the critical role of LT pathway receptor antagonists and inhibitors in Covid-19 management. A literature search was done in PubMed, Scopus, Web of Science and Google Scholar databases to find the potential role of montelukast and other LT inhibitors in the management of pulmonary and extra-pulmonary manifestations triggered by SARS-CoV-2. Data obtained so far underline that pulmonary and extra-pulmonary manifestations in Covid-19 are attributed to a direct effect of SARS-CoV-2 in expressed ACE2 receptors or indirectly through NF-κB dependent induction of a cytokine storm. Montelukast can ameliorate extra-pulmonary manifestations in Covid-19 either directly through blocking of Cys-LTRs in different organs or indirectly through inhibition of the NF-κB signaling pathway.


Subject(s)
Acetates/therapeutic use , COVID-19 Drug Treatment , Cyclopropanes/therapeutic use , Leukotriene Antagonists/therapeutic use , Leukotrienes , Lung Diseases/drug therapy , Quinolines/therapeutic use , Signal Transduction/drug effects , Sulfides/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Humans , Lung Diseases/etiology , Receptors, Leukotriene/drug effects
9.
Sci Rep ; 11(1): 6397, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142453

ABSTRACT

A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time-space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.


Subject(s)
Quinolines/chemistry , SARS-CoV-2/chemistry , Computer Simulation , Density Functional Theory , Drug Evaluation, Preclinical , Molecular Docking Simulation , Molecular Dynamics Simulation , Quinolines/therapeutic use , COVID-19 Drug Treatment
11.
J Asthma ; 59(4): 780-786, 2022 04.
Article in English | MEDLINE | ID: covidwho-1082299

ABSTRACT

OBJECTIVE: Several therapeutic agents have been assessed for the treatment of COVID-19, but few approaches have been proven efficacious. Because leukotriene receptor antagonists, such as montelukast have been shown to reduce both cytokine release and lung inflammation in preclinical models of viral influenza and acute respiratory distress syndrome, we hypothesized that therapy with montelukast could be used to treat COVID-19. The objective of this study was to determine if montelukast treatment would reduce the rate of clinical deterioration as measured by the COVID-19 Ordinal Scale. METHODS: We performed a retrospective analysis of COVID-19 confirmed hospitalized patients treated with or without montelukast. We used "clinical deterioration" as the primary endpoint, a binary outcome defined as any increase in the Ordinal Scale value from Day 1 to Day 3 of the hospital stay, as these data were uniformly available for all admitted patients before hospital discharge. Rates of clinical deterioration between the montelukast and non-montelukast groups were compared using the Fisher's exact test. Univariate logistic regression was also used to assess the association between montelukast use and clinical deterioration. A total of 92 patients were analyzed, 30 who received montelukast at the discretion of the treating physician and 62 patients who did not receive montelukast. RESULTS: Patients receiving montelukast experienced significantly fewer events of clinical deterioration compared with patients not receiving montelukast (10% vs 32%, p = 0.022). Our findings suggest that montelukast associates with a reduction in clinical deterioration for COVID-19 confirmed patients as measured on the COVID-19 Ordinal Scale. CONCLUSIONS: Hospitalized COVID-19 patients treated with montelukast had fewer events of clinical deterioration, indicating that this treatment may have clinical activity. While this retrospective study highlights a potential pathway for COVID-19 treatment, this hypothesis requires further study by prospective studies.


Subject(s)
Asthma , COVID-19 Drug Treatment , Clinical Deterioration , Quinolines , Acetates/therapeutic use , Asthma/drug therapy , Cyclopropanes , Humans , Leukotriene Antagonists/therapeutic use , Prospective Studies , Quinolines/therapeutic use , Retrospective Studies , SARS-CoV-2 , Sulfides , Treatment Outcome
12.
Int J Infect Dis ; 105: 598-605, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1071457

ABSTRACT

OBJECTIVE: There is an urgent need for effective treatments to prevent or attenuate lung and systemic inflammation, endotheliitis, and thrombosis related to COVID-19. This study aimed to assess the effectiveness of a multidrug-therapy consisting of Ivermectin, Azithromycin, Montelukast, and Acetylsalicylic acid ("TNR4" therapy) to prevent hospitalization and death among ambulatory COVID-19 cases in Tlaxcala, Mexico. DESIGN AND METHODS: A comparative effectiveness study was performed among 768 confirmed SARS-CoV-2 cases aged 18-80 years, who received ambulatory care at the Ministry of Health of Tlaxcala. A total of 481 cases received the TNR4 therapy, while 287 received another treatment (comparison group). All participants received home visits and/or phone calls for clinical evaluation during the 14 days after enrollment. RESULTS: Nearly 85% of cases who received the TNR4 recovered within 14 days compared to 59% in the comparison group. The likelihood of recovery within 14 days was 3.4 times greater among the TNR4 group than in the comparison group. Patients treated with TNR4 had a 75% and 81% lower risk of being hospitalized or death, respectively, than the comparison group. CONCLUSIONS: TNR4 therapy improved recovery and prevented the risk of hospitalization and death among ambulatory COVID-19 cases.


Subject(s)
Acetates/therapeutic use , Antiviral Agents/therapeutic use , Aspirin/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Cyclopropanes/therapeutic use , Ivermectin/therapeutic use , Quinolines/therapeutic use , Sulfides/therapeutic use , Adult , Aged , Aged, 80 and over , Drug Therapy, Combination , Hospitalization , Humans , Male , Mexico , Middle Aged , SARS-CoV-2 , Treatment Outcome , Young Adult
13.
Int J Antimicrob Agents ; 57(1): 106216, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065130

ABSTRACT

BACKGROUND: There are no effective therapies for patients with coronavirus disease-2019 (COVID-19). METHODS: Forty-one patients with confirmed COVID-19 were enrolled in the study and divided into two groups: artemisinin-piperaquine (AP) (n = 23) and control (n = 18). The primary outcome were the time taken to reach undetectable levels of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the percentage of participants with undetectable SARS-CoV-2 on days 7, 10, 14, and 28. The computed tomography (CT) imaging changes within 10 days, corrected QT interval changes, adverse events, and abnormal laboratory parameters were the secondary outcomes. RESULTS: The mean time to reach undetectable viral RNA (mean ± standard deviation) was 10.6 ± 1.1 days (95% confidence interval [CI] 8.4-12.8) for the AP group and 19.3 ± 2.1 days (95% CI 15.1-23.5) for the control group. The percentages of patients with undetectable viral RNA on days 7, 10, 14, 21, and 28 were 26.1%, 43.5%, 78.3%, 100%, and 100%, respectively, in the AP group and 5.6%, 16.7%, 44.4%, 55.6%, and 72.2%, respectively, in the control group. The CT imaging within 10 days post-treatment showed no significant between-group differences (P > 0.05). Both groups had mild adverse events. CONCLUSIONS: In patients with mild-to-moderate COVID-19, the time to reach undetectable SARS-CoV-2 was significantly shorter in the AP group than that in the control group. However, physicians should consider QT interval changes before using AP.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Artemisinins/therapeutic use , COVID-19 Drug Treatment , Quinolines/therapeutic use , Adult , Artemisinins/adverse effects , Drug Therapy, Combination , Female , Humans , Long QT Syndrome/chemically induced , Lung Diseases/diagnostic imaging , Lung Diseases/drug therapy , Lung Diseases/virology , Male , Middle Aged , Quinolines/adverse effects , RNA, Viral/blood , SARS-CoV-2/genetics , Viral Load
14.
Angew Chem Int Ed Engl ; 60(17): 9467-9473, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1037522

ABSTRACT

The search for vaccines that protect from severe morbidity and mortality because of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Here we describe an amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile. It is water-soluble and exhibits massive translocation to lymph nodes upon local administration through binding to albumin, affording localized innate immune activation and reduction in systemic inflammation. The adjuvanticity of IMDQ-PEG-CHOL was validated in a licensed vaccine setting (quadrivalent influenza vaccine) and an experimental trimeric recombinant SARS-CoV-2 spike protein vaccine, showing robust IgG2a and IgG1 antibody titers in mice that could neutralize viral infection in vitro and in vivo in a mouse model.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Imidazoles/therapeutic use , Immunity, Innate/drug effects , Quinolines/therapeutic use , Animals , COVID-19 Vaccines/immunology , Cholesterol/analogs & derivatives , Cholesterol/immunology , Cholesterol/therapeutic use , Female , Humans , Imidazoles/immunology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Membrane Glycoproteins/agonists , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Polyethylene Glycols/therapeutic use , Quinolines/immunology , Recombinant Proteins/immunology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Surface-Active Agents/therapeutic use , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
15.
Zhongguo Fei Ai Za Zhi ; 23(10): 858-865, 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-914583

ABSTRACT

BACKGROUND: Anlotinib is a newly developed small molecule multiple receptor tyrosine kinase (RTK) inhibitor that was approved for the treatment of patients with lung cancer in China. We aim to report 3 cases of rare complication of anlotinib-bronchial fistula (BF) during the treatment of lung cancer patients and summarize the possible causes. METHODS: We collected three patients who developed BF due to anlotinib treatment, and conducted a search of Medline and PubMed for medical literature published between 2018 and 2020 using the following search terms: "anlotinib," "lung cancer," and "fistula." RESULTS: Our literature search produced two case reports (three patients) which, in addition to our three patients. We collated the patients' clinical characteristics including demographic information, cancer type, imaging features, treatment received, risk factors for anlotinib related BF, and treatment-related outcomes. The six patients shared some common characteristics: advanced age, male, concurrent infection symptoms, diabetes mellitus (DM), advanced squamous cell and small cell lung cancers, centrally located tumors, tumor measuring ≥5 cm in longest diameter, and newly formed tumor cavitation after multi-line treatment especially after receiving radiotherapy. Fistula types included broncho-pericardial fistula, broncho-pleural fistula, and esophago-tracheobronchial fistula. Six patients all died within 6 months. CONCLUSIONS: Although anlotinib is relatively safe, it is still necessary to pay attention to the occurrence of BF, a rare treatment side effect that threatens the quality of life and overall survival of patients. Anlotinib, therefore, requires selective use and close observation of high-risk patients.


Subject(s)
Antineoplastic Agents/adverse effects , Bronchial Fistula/etiology , Indoles/adverse effects , Lung Neoplasms/drug therapy , Quinolines/adverse effects , Aged , Antineoplastic Agents/therapeutic use , Bronchial Fistula/diagnostic imaging , China , Humans , Indoles/therapeutic use , Male , Middle Aged , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use
16.
Drug Discov Today ; 25(12): 2076-2079, 2020 12.
Article in English | MEDLINE | ID: covidwho-778755

ABSTRACT

As a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, a clinical complication can arise that is characterized by a hyperinflammatory cytokine profile, often termed a 'cytokine storm'. A protein complex (nuclear factor kappa-light-chain-enhancer of activated B cells; NF-κB) is intricately involved in regulating inflammation and the immune response following viral infections, with a reduction in cytokine production often observed following a decrease in NF-κB activity. An approved asthma drug, montelukast, has been found to modulate the activity of NF-κB, and result in a corresponding decrease in proinflammatory mediators. Herein, we hypothesize that repurposing montelukast to suppress NF-κB activation will result in an attenuation of proinflammatory mediators and a decrease in cytokine production, thereby leading to a reduction in symptom severity and to improved clinical outcomes in patients with Coronavirus 2019 (COVID-19).


Subject(s)
Acetates/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Cytokines/immunology , Leukotriene Antagonists/therapeutic use , NF-kappa B/immunology , Quinolines/therapeutic use , Respiratory Distress Syndrome/therapy , Age Factors , COVID-19/immunology , Cyclopropanes , Cytokine Release Syndrome/immunology , Drug Repositioning , Humans , Obesity/immunology , Respiratory Distress Syndrome/immunology , Severity of Illness Index , Sex Factors , Signal Transduction/immunology , Sulfides
19.
Med Hypotheses ; 144: 110046, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-627612

ABSTRACT

It has been hypothesised that antiallergic medications (AAMs) like montelukast and levocetirizine both the two bitter chloro compounds could be repurposed either alone or combinedly as an antiviral against SARS-CoV-2, like chloroquine/hydroxychloroquine (CQ/HCQ), another two bitter chloro compounds. Both AAMs and CQ/HCQ are bitter tasted chloro compounds. Depending on their these two similar physical properties and the safety and efficacy of AAMs by controlling over post viral episodes as comparing with viral inhibitory activities including SARS-CoV-2 by CQ/HCQ, a reposition of AAMs either alone/combinedly could be rationalised as an antiviral approach to nCoV.


Subject(s)
Acetates/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cetirizine/therapeutic use , Drug Repositioning , Quinolines/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Clinical Trials as Topic , Cyclopropanes , Histamine H1 Antagonists, Non-Sedating/therapeutic use , Humans , Hypersensitivity/drug therapy , Models, Theoretical , Patient Safety , Sulfides , Taste
SELECTION OF CITATIONS
SEARCH DETAIL